
C# Scripting Engine
SYSPRO 8

Reference Guide
Published: July 2025



CO
N
TE
N
TS

Power Tailoring C# Scripting
Exploring 1
Starting 3
Solving 5
Using 11



Power Tailoring C# Scripting
Exploring
Where it fits in?
We have updated the Scripting Engine to create and execute scripts using C#, asMicrosoft are
deprecating VB Script from future versions of their operating systems. The introduction of C#
scripting allows for the customisation, power tailoring and Application Designer program to use a
modern language and use the power of the .Net framework when building and delivering bespoke
requirements in SYSPRO. In all areas of SYSPRO where VBScript was previously supported, you now
have the option to create and utilize C# scripts.

Benefits

C# scripting aligns with modern standards, ensuring improved performance, security, and
maintainability.

Optimized, scalable C# functions that meet specific user needs enable tailored ERP
solutions.

C# ensures efficient, future-ready solutions and enhanced customer experiences.

Functionality

Dual-language support:

During the transition phase, SYSPRO supports both languages when creating scripts.

While both, VB and C# scripting are supported, C# takes precedence,
i.e. if a C# script exists, the VB script will be ignored.

Integrated error handling and debugging:

Offers syntax checking, error previews, and Visual Studio integration for step-through
debugging.

Extensive customization

Supports script execution across various contexts (panes, workflows, eSignatures, tiles,
etc.) with role-, system-, and user-level granularity.

Reusable logic via references

Allows scripts to include shared .NET assemblies, promoting modularity and
maintainability

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

1

POWER TAILORING C# SCRIPTING | EXPLORING



Navigation
The programs related to this feature are accessed from the Program List of the SYSPRO menu:

Program List > Administration

Program List > Quality Management

Program List > SYSPRO Workflow Services

Terminology
Script
In SYSPRO, a script is essentially a piece of code that enhances and manipulates the functionality of
a SYSPRO program to meet a customer's needs

Although a script is interpreted and not compiled, SYSPRO uses the term script to refer to both
VBScript and C# code. This means that even though C# is not traditionally considered a scripting
language, it is treated as such within SYSPRO through the use of dynamic logic, which allows
variables to be set at runtime.

While both, VB and C# scripting are supported, C# takes precedence, i.e. if a C#
script exists, the VB script will be ignored.

Script type
In SYSPRO, a script type refers to the specific context or component within the system where a
script is applied.

These types determine how and where scripts are stored, executed, and maintained, for example:

Pane scripts are tied to individual forms or listviews within a program.

Custom pane scripts are linked to user-defined interface elements.

Workflow scripts automate actions within business processes.

eSignature scripts validate transactions, etc.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

2

POWER TAILORING C# SCRIPTING | EXPLORING



Starting
Prerequisites
To use this feature, the following must be installed:

.Net 8 x86 Runtime version 8.0.10

This must be installed on all on all client machines running SYSPRO
as the C# scripting engine utilizes .NET Core 8 when saving, editing,
deleting and executing, scripts.

Security
You can secure this feature by implementing a range of controls against the affected programs.
Although not all these controls are applicable to each feature, they include the following:

You restrict operator access to activities within a program using the Operator
Maintenance program.

You can restrict operator access to the fields within a program (configured using the
Operator Maintenance program).

You can restrict operator access to functions within a program using passwords
(configured using the Password Definition program). When defined, the password
must be entered before you can access the function.

You can restrict access to the eSignature transactions within a program at operator,
group, role or company level (configured using the Electronic Signature
Configuration Setup program). Electronic Signatures provide security access,
transaction logging and event triggering that gives you greater control over your
system changes.

You can restrict operator access to programs by assigning them to groups and applying
access control against the group (configured using the Operator Groups program).

You can restrict operator access to programs by assigning them to roles and applying
access control against the role (configured using the Role Management program).

Restrictions and Limits
C# scripting doesn't support script timeouts. Unlike VBScript, forcibly terminating a
running C# script is unsafe and may lead to unpredictable behavior.

If absolutely necessary, users can manually end the SYSPROSA_
ScriptingRuntimeProcess.exe using the Task Manager, though this is strongly
discouraged.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

3

POWER TAILORING C# SCRIPTING | STARTING



C# reference assemblies can't be written from within SYSPRO

We don't support creating C# reference assemblies. These must be created using
external software. We strongly recommend that these assemblies be compiled using
the AnyCPU configuration in order to support possible future scripting enhancements.

Script Variables and Instances

C# compilations are treated as scripts, meaning variables and instances are cleared on
each new run. For global variables, use SystemVariables.GlobalVariable1-4 or the
SET-VARIABLE and GET-VARIABLE callout functions.

Script Language Changes

The existing script will be overwritten when changing the scripting language of tiles,
flowgraphs, and Application Designer scripts.

The old script (i.e. the script in the previous language) is only
available while the script editor is still open. Once the script editor
is closed, the content of the old script will be lost.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

4

POWER TAILORING C# SCRIPTING | STARTING



Solving
FAQs
Working with references
What are script references in SYSPRO?
The C# programming language supports the use of references, which becomes especially useful
when an assembly is utilized for functions required by multiple scripts. Script references enable
common code to be written and compiled into a .dll assembly file, allowing other projects to access
and use this shared logic. This facilitates multiple programs to leverage common functionality
efficiently.

References have two key points of information:

Namespaces

This is a list of namespaces provided within the assembly reference and each namespace
is vital to accessing certain pieces of code within the assembly.

FOR EXAMPLE:

Double click on the namespace in the References Listview to add a using statement
for the namespace.

References

These sub-references under the parent assembly (also known as dependencies) are
sometimes vital to the methods of the parent. Whilst not always required, it can be
beneficial to add these into the reference list.

Which types of references are available?
The following two types of references offered within SYSPRO scripting:

Local references:

These are references that are accessible within a single script instance, i.e. per executing
script.

There can be a maximum of 20 of these per script.

These are saved in the AdmScriptDetail table per record.

Global references:

These are references that are accessible across any and all script instances.

These are saved in the AdmScriptReference table.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

5

POWER TAILORING C# SCRIPTING | SOLVING



How can I add a reference?
Follow these steps to add a reference:

1. In the Script window, select C# at the Language tool.

This ensures that you are working with a C# script.

2. Click on View and select Show Project References Window.

The Project References pane is displayed.

3. Select New.

4. Browse and select the dll you need.

The dll is loaded into the listview.

5. You now have the option to save the reference as a global assembly. This will store it so that it
is available to all scripts.

When saving, the assemblies are validated, marked as Saved to database and information is
populated regarding their namespaces and sub-references.

6. You can double click on a namespace to insert it at the top of your code.

What are common references?
SYSPRO provides the following common references to each script. These are displayed in a blue
color in the Project References listview.

SYSPROSA_ScriptCommon.dll

Provides common functionality to all scripts

SYSPROSA_ScriptingRuntimeProcess.dll

Required by SYSPROSA_ScriptCommon.dll

Microsoft.Data.SqlClient.dll

Provides SQL functionality to scripts

Microsoft.Identity.Client.dll

Required by Microsoft.Data.SqlClient.dll

System.Security.Permissions.dll

Required by Microsoft.Data.SqlClient.dll

System.Management.dll

Provides Win32 functionality to scripts and is required by the diagnostics script
(IMPMENYY).

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

6

POWER TAILORING C# SCRIPTING | SOLVING



Why can’t I see my reference namespaces?
References often contain dependencies to other assemblies. In order to access the namespaces of
the parent assembly, it is often required to add the dependencies as well. This ensures that the
assembly is loaded correctly so that the namespaces can be accessed.

You can try adding a few of the key dependencies onto the reference list.

Differences between C# and VB scripts in SYSPRO
What are the syntax differences between C# and VBScript?
The main syntax differences between C# and VBScript in SYSPRO scripting are:

Case Sensitivity

VBScript is case-insensitive, meaning variables, functions, and routines can be written in
any case and referenced in a different case.

C# is case-sensitive, so functions, variables, and routines must be written and referenced
in the same case.

Return Types

In VBScript, certain functions can return values to alter their effects, such as returning
false to cancel a change. While this concept remains in C#, the return syntax differs.

FOR EXAMPLE:

A function in C# might use a Boolean return type to allow or disallow changes based
on specific conditions.

What are the variable differences between C# and VBScript?
In VBScript, variables are often appended with the CodeObject instance to access runtime variables,
whereas in C#, Variables are accessed directly without the CodeObject instance.

This table shows the differences:

Script caption/type Code injection (VBScript) Code injection (C#)

Any panes fields {PaneName}.CodeObject.
{FieldName}

Panes.{Pane name}.
{FieldName}

Listview (array in) {Listview name}.CodeObject.Array Panes.{Listview
name}.Array

Listview (array out) {Listview name}_
OUT.CodeObject.Array

Panes.{Listview name}_
OUT.Array

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

7

POWER TAILORING C# SCRIPTING | SOLVING



Script caption/type Code injection (VBScript) Code injection (C#)

CustomPane variables CustomizedPane.CodeObject.
{VariableName}

CustomizedPane.
{VariableName}

CustomPanes variables CustomizedPanes.CodeObject.
{CustomPaneName}

CustomizedPanes.
{CustomPaneName}

eSignature variables eSignature.CodeObject.
{VariableName}

eSignatures.{VariableName}

Flowgraph variables Flowgraph.CodeObject.
{VariableName}

Flowgraph.{VariableName}

Workflow variables WorkflowVariables.CodeObject.
{VariableName}

WorkflowVariables.
{VariableName}

Tile variables Tile.CodeObject.{VariableName} Tile.{VariableName}

System variables SystemVariables.CodeObject.
{VariableName}

SystemVariables.
{VariableName}

What are the array differences between C# and VBScript?
Arrays in C# scripting work differently from standard .NET arrays and VBScript arrays.

VBScript arrays were indexed by column and then row, which has been changed in C# to
row and then column indexing.

In C#, arrays are accessible within a class called TwoDimensionalArray with the following
methods and/or accessors:

Accessor Method

Getter:

Array[row, col]

var myCell = CustomizedPane.Array[0,0];

Setter:

Array[row,col] = {value}

Panes.Movements.Array[0,1] = “New
value”;

Upper bound:

Array.GetUpperBound(dimension)

CustomizedPane.Array.GetUpperBound(0);

Lower bound:

Array.GetLowerBound(dimension)

Panes.Movements.Array.GetLowerBound
(0);

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

8

POWER TAILORING C# SCRIPTING | SOLVING



Accessor Method

Get .NET 2d array:

Array.GetBaseArray()

Panes.Movements.GetBaseArray();

Returns object[,] of list view values. This
can allow you to use standard array
routines not accessible under this class.

What are the code setup differences between C# and VBScript?
The code setup for C# requires a namespace, class name, and inheritance, which are set up by
default when creating a new script and can't be changed.

This ensures that the script adheres to the required C# syntax and can be executed without errors.

Script location, conditions and execution hierarchy
Which conditions do I need to comply with when creating C# scripts?
Take note of the following when creating C# scripts using the Script Editor:

The default code structure provided by the syntax editor must be left unchanged.

Any new functions added must be placed within the innermost curly braces {} of the class
structure.

The script must adhere to C# syntax, and any errors will be displayed in the Errors and
warnings listview.

Code injection must be followed correctly by double-clicking on an item in the Variables
listview.

What is the execution hierarchy of C# scripts in SYSPRO?
C# scripts follow the same execution hierarchy as VBscripts, which is as follows:

1. Role script

2. Industry script

3. System-wide script

4. Company script

5. Operator script

6. Global script

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

9

POWER TAILORING C# SCRIPTING | SOLVING



Where are scripts stored in the database?
The following system-wide database tables store script information:

The AdmScriptDetailtable stores the base-64 encoded contents of scripts.

The AdmScriptReference store the base-64 encoded contents of .dll assemblies.

Script size and language
How do you change the script language?

1. Navigate to the Script Editor.

2. Select the script language from the Language control on the toolbar.

What is the size limit for C# and VB scripts?
The VBScript limit of 200,000 characters has been removed for C# scripts. However, we recommend
not to exceed the original limit, to ensure that results are responsive and efficient.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

10

POWER TAILORING C# SCRIPTING | SOLVING



Using
Script Information
Script Types
SYSPRO supports scripting in multiple areas, which can be referred to as script types:

Script Type Description

Pane scripts

(form, listview)

These scripts are saved per pane in a SYSPRO program.

FOR EXAMPLE:

The program Customer Query has a form and a listview.
Both are deemed panes and can have their own scripts.

Custom pane scripts

(for all custom pane types)

These are custom panes scripts stored per custom pane ID.

eSignature scripts

(non-e.net only)

These scripts are saved per eSignature transaction ID.

Workflow scripts Workflows allow actions to be executed, which are created
through a SYSPRO program. These actions can execute a script.

Scripts are stored per workflow action IDd and are prefixed by an
underscore, e.g. '_'.

Application Designer
custom scripts

A SYSPRO program created using the Application Designer has
the capability to create and save its own VB scripts.

VB scripts, specifically, are stored by the calling program in the
location of its choice. These scripts can then be executed when
the program owner chooses.

Tile scripts Tiles can contain scripts against them.

Flowgraph scripts Flowgraph scripts can exist per flowgraph with the ability to set
and retrieve flowgraph information.

Application Designer
application scripts

The main source code for an Application Designer application
sits within its script, editable through Application Designer
itself.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

11

POWER TAILORING C# SCRIPTING | USING



Script Saving Levels
Scripts are saved and executed at certain levels depending on the login.

It is important to note the differences to understand the contexts of script saving.

Save Level Description
VBScript Location
Example

C# Script Location Example

Global These are scripts
saved usually when an
operator edits a script
and is not in design
mode (although, there
are exceptions).

Usually stored in the
\Work\VBScripts

folder.

Work\

vbscripts\

IMPMENYY

{System-wide db}..AdmScriptDetails

LevelId = 20

LevelValue = “GLOBAL”

ApplicationType = “SA”

ApplicationName = “IMPMENYY”

Operator These are scripts
stored per operator.
Usually, these are only
customized panes
which have been
created when not in
design mode, and are
stored in the
\Base\Settings

folder.

Base\

settings\

Pane_ADMIN_
INVPUY00

{System-wide db}..AdmScriptDetails

LevelId = 9

LevelValue = “Cameron”

ApplicationType = “CU”

ApplicationName = “INVPUY00”

System-
wide

Stored when editing
by system-wide in the
\Base\Settings

\Role_SYS folder.

Base\

settings\

Role_SYS\

INVPUYLV

{System-wide db}..AdmScriptDetails

LevelId = 1

LevelValue = “SYS”

ApplicationType = “SA”

ApplicationName = “INVPUYLV”

Industry Stored when editing
by system-wide in the
\Base\Settings

\Role_AAA folder.

Industry IDs are
alphabetic.

Base\

settings\

Role_IND\

INVPUYLV

{System-wide db}..AdmScriptDetails

LevelId = 5

LevelValue = “IND”

ApplicationType = “SA”

ApplicationName = “INVPUYLV”

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

12

POWER TAILORING C# SCRIPTING | USING



Save Level Description
VBScript Location
Example

C# Script Location Example

Role Stored when editing
by role in the
\Base\Settings

\Role_### folder.

Role IDs are numeric.

Base\

settings\

Role_031\

INVPUYLV

{System-wide db}..AdmScriptDetails

LevelId = 7

LevelValue = “031”

ApplicationType = “SA”

ApplicationName = “INVPUYLV”

Company Stored when editing
scripts that affect
company data only.

Usually, this only
applies to Application
Designer custom
scripts.

DS001_CMP_
EDU1_800

..SqmTestHeader

.ScriptContents

{System-wide db}..AdmScriptDetails

LevelId = 8

LevelValue = “EDU1”

ApplicationType = “CS”

ApplicationName = “INSPECTION”

File Stored at file-level.
These are dependant
on circumstance, e.g.
Application Designer
applications.

Stored within a file
itself.

Stored within a file itself.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

13

POWER TAILORING C# SCRIPTING | USING



Script Locations
Scripts are stored in different locations based on the language and script type.

Script Type VB Script Location C# Location

Pane For global scripts:

(Server)
\Work\VBScripts

(Client)
\Base\Settings\VBScripts\

{PaneId}

For role/industry/system-wide
scripts:

(Server and Client)

\Base\Settings\Role_XXX\

{PaneId}

where XXX is:

Industry code for
industries

SYS for system-wide

Role code for roles

System-wide database:

AdmScriptDetail

These are stored per pane ID, i.e.
each pane will be its own record in
the table.

Custom pane For operators:

\Base\Settings\{OperatorCode}_
VBS_{PaneId}

For role/industry/system-wide:

(Server and Client)
\Base\Settings\Role_XXX\

{PaneId} }

where XXX is:

Industry code for
industries

SYS for system-wide

Role code for roles

Same as pane

These are stored per custom pane,
i.e. each custom pane will be its own
record in the table.

Unless designing by role, system-
wide, or industry, the script will be
stored as a GLOBAL script.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

14

POWER TAILORING C# SCRIPTING | USING



Script Type VB Script Location C# Location

eSignature Same as pane Same as pane

These are stored per transaction ID,
i.e. each transaction will be its own
record in the table.

Workflow Same as pane Same as pane

These are stored per action ID, i.e.
each action will be its own record in
the table.

Application
Designer
custom scripts

Stored in the calling program’s
database table, e.g. SqmTestHeader
stores the vbscript in it’s own
Script code column.

Same as pane

These are stored according to the
table key of the calling program in
order to uniquely identify scripts.

Tile These are stored on the local disk in the Task_{Operator}_{PaneId}_
{UniqueFileId}.Xml file and saved to the server if required.

Flowgraph These are stored in the xml file stored on the local disk and saved to the
server if required.

Application
Designer
application

These are stored in the {ProgramName}_AppDesigner.txt file.

SYSPRO Functionality
SYSPRO offers the following default functionality within the SysproApplication and
SysproCustomApplication classes:

Function Description Supported in WebUI

SysproMessageBox Show a dialog box Yes

SysproInputBox Show an input box Yes

SysproDebugBreak Debug the code provided it was
compiled for debugging

No

CallSYSPROFunction Call a SYSPRO function (mainly for
the Application Designer)

Yes

CallBO Call a business object Yes

CallTrn Call a transaction business object Yes

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

15

POWER TAILORING C# SCRIPTING | USING



Function Description Supported in WebUI

CallSetup Call a setup business object Yes

CallWorkflow Call a workflow process Yes

SYSPROMessageBox
Syntax

int SysproMessageBox(
string content, 
string title = "", 
string instructionText = "", 

    SysproButtons buttons = SysproButtons.Ok, 
    SysproIcons icon = SysproIcons.None
)

Parameters:

Parameter Description

content The content of the message box.

Limited to 2000 characters.

title The title of the message box.

Limited to 100 characters.

instructionText The instruction text of the message box.

Limited to 100 characters.

buttons Button choice for the message box.

Available options:

SysproButtons.None

SysproButtons.Ok

SysproButtons.OkCancel

SysproButtons.YesNoCancel

SysproButtons.YesNo

SysproButtons.Retry

SysproButtons.RetryCancel

icon The icon to display on the message box (also treated as severity:

SysproIcons.None

SysproIcons.Information

SysproIcons.Warning

SysproIcons.Error

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

16

POWER TAILORING C# SCRIPTING | USING



Returns:

An integer value representing the ID of the button clicked.

Button Integer ID

{None – when
SysproButtons.None used}

0

Ok 1

Yes 2

No 4

Cancel (Esc) 8

Retry 16

Close 32

SysproInputBox
Syntax

(int Button, string Text) SysproInputBox(
string content, 
string title = "", 
string instructionText = "", 
string defaultInputBoxText = "", 

    SysproButtons buttons = SysproButtons.Ok, 
    SysproIcons icon = SysproIcons.None
)

Parameters:

Parameter Description

content The content of the message box.

Limited to 2000 characters.

title The title of the message box.

Limited to 100 characters.

instructionText The instruction text of the message box.

Limited to 100 characters.

defaultInputBoxText The default text to be placed inside the input box.

Limited to 255 characters.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

17

POWER TAILORING C# SCRIPTING | USING



Parameter Description

buttons Button choice for the message box.

Available options:

SysproButtons.None

SysproButtons.Ok

SysproButtons.OkCancel

SysproButtons.YesNoCancel

SysproButtons.YesNo

SysproButtons.Retry

SysproButtons.RetryCancel

icon The icon to display on the message box (also treated as severity:

SysproIcons.None

SysproIcons.Information

SysproIcons.Warning

SysproIcons.Error

Returns:

A tuple of the following two values:

Button Integer ID

Button An integer value representing the id of the button clicked.

Text The text value inside the input box.

Only the first 255 characters are returned.

Use the following syntaxto access these variables:

Syntax

var inputBoxReturn = SysproInputBox(“Enter a value”);
int buttonId = inputBoxReturn.Button;
string inputBoxText = inputBoxReturn.Text;

The following table shows the possible button IDs:

Button Integer ID

{None – when
SysproButtons.None used}

0

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

18

POWER TAILORING C# SCRIPTING | USING



Button Integer ID

Ok 1

Yes 2

No 4

Cancel (Esc) 8

Retry 16

Close 32

SysproDebugBreak
When saved for debug, allows the script to be debugged.

Syntax

void SysproDebugBreak()

Parameters:

None

Returns:

None

CallSYSPROFunction
Used to make calls to the SYSPRO runtime to perform certain functions. Mainly used in IMPIDE
Applications.

Syntax

dynamic CallSYSPROFunction(
string calloutFunction, 
string controlName, 
string calloutDetail

)

Parameters:

Parameter Description

calloutFunction The string of the callout function.

Usually in the form of a constant which is accessible under the
SysproApplication and SysproCustomApplication classes. Using
the CalloutFunctions window will automatically insert the correct
one.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

19

POWER TAILORING C# SCRIPTING | USING



Parameter Description

controlName The control name against which the function must be applied.
Usually for IMPIDE applications when there is large control over
each control, e.g. IMPQBSF0

calloutDetail The parameters for the specified function. These are specific for
each function and are defined in the “Remarks” column of the
CalloutFunctions window.

Returns:

A dynamic value dependant on the function called. Usually, this would be a string value returned
by SYSPRO, however, in certain cases it may be of another type. For example, the
ListviewGetRecords callout will return a 2-dimensional array (string[,]). See the “Remarks”
column of the CalloutFunctions window for more details on the return types.

Use the following syntaxto access these variables:

CallBO
Calls a SYSPRO Query business object

Syntax

string CallBO(
string businessObject, 
string businessObjectXMLIn, 
string instance

)

Parameters:

Parameter Description

businessObject The name of the business object e.g. WIPQRY.

businessObjectXMLIn The XML in for the business object.

instance The SYSPRO instance.

This is obsolete and is used only for consistency purposes.

Returns:

XmlOut string returned by the business object.

Exceptions:

EnetException Thrown when an exception occurs from a business object.

CallTrn
Calls a SYSPRO Transaction business object

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

20

POWER TAILORING C# SCRIPTING | USING



Syntax

string CallTrn(
string businessObject, 
string businessObjectParameters, 
string businessObjectXMLIn, 
string businessObjectMethod, 
string instance

)

Parameters:

Parameter Description

businessObject The name of the business object e.g. WIPQRY.

businessObjectParameters The parameters for the business object.

businessObjectXMLIn The XML in for the business object.

businessObjectMethod The method of the Transaction business object.

Available options:

Transaction

Build

instance The SYSPRO instance.

This is obsolete and is used only for consistency purposes.

Returns:

XmlOut string returned by the business object.

Exceptions:

EnetException Thrown when an exception occurs from a business object.

CallSetup
Calls a SYSPRO Setup business object

Syntax

string CallSetup(
string businessObject, 
string businessObjectParameters, 
string businessObjectXMLIn, 
string businessObjectMethod, 
string instance

)

Parameters:

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

21

POWER TAILORING C# SCRIPTING | USING



Parameter Description

businessObject The name of the business object e.g. WIPQRY.

businessObjectParameters The parameters for the business object.

businessObjectXMLIn The XML in for the business object.

businessObjectMethod The method of the Transaction business object.

Available options:

Add

Update

Delete

instance The SYSPRO instance.

This is obsolete and is used only for consistency purposes.

Returns:

XmlOut string returned by the business object.

Exceptions:

EnetException Thrown when an exception occurs from a business object.

CallWorkflow
Syntax

string CallWorkflow(
string workflowAddress, 
string workflowParameters

)

Parameters:

Parameter Description

workflowAddress The address of the Workflow service.

workflowParameters The xml string of parameters to be sent to the Workflow. Use the
Script Editor to correctly generate this xml.

Returns:

String return value from the workflow service defining its success state.

Exceptions:

EnetException Thrown when an exception occurs from a business object.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

22

POWER TAILORING C# SCRIPTING | USING



Affected programs
The following indicates areas in the product that may be affected by implementing this feature:

Setup programs
Scripting Engine

This program handles all C# scripting logic. It was developed with an API-based infrastructure
and calls to the C# scripting engine both server and client-side.

Customization Management

SYSPRO Ribbon bar > Administration > Customization

This program lets you view and manage the various customization layouts that have been
applied to operator roles within SYSPRO.

For the Scripting Engine enhancement, we made the following changes:

All references to VBScript were changed to Script.

You can copy, delete, export, and import C# scripts.

C# and VBscripts are displayed within listviews.

Customization Profiler

Accessible from any docking pane caption or menu pull-down (right-click the title bar of a pane and
select Customization Profiler from the context menu).

This program lets you view and analyze customizations that have been applied to a program or
application within SYSPRO, including the main menu.

For the Scripting Engine enhancement, we made the following changes:

A new Script section displays VBScripts and C# script information.

C# scripts are only displayed if available to the current login.

Electronic Signature Configuration Setup

Program List > Administration > Electronic Signatures

This program lets you enable the Electronic Signatures system and create or maintain your
eSignature configuration levels and their associated access control.

For the Scripting Engine enhancement, we made the following changes:

We added eSignatures for adding, deleting, copying, importing and exporting C#
scripts.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

23

POWER TAILORING C# SCRIPTING | USING



Customized Pane Editor

Accessible by right-clicking the heading of a docking pane and selecting New or Properties from the
Customized Paneoption.

You use this program to create your own views in SYSPRO using various graphical components
such as graphs, listviews and web applications.

For the Scripting Engine enhancement, we made the following changes:

All references to VBScript were changed to Script.

The Language option was added on the toolbar so the script can be saved in VBScript
and C#.

We removed the VBScript file name field to avoid confusion.

Workflow Action Maintenance

Program List > SYSPRO Workflow Services

This program lets you add actions that can be used in a workflow. These actions are used to
create a hyperlink against a task in the To-Do List program.

For the Scripting Engine enhancement, we made the following changes:

All references to VBScript were changed to Script.

Inspection Test Design

Program List > Quality Management > Setup

This program lets you design your own inspection tests that are used in the Quality
Managementmodule when inspecting work in progress (WIP) and purchase order receipts.

For the Scripting Engine enhancement, we made the following changes:

All references to VBScript were changed to Script.

We added the functionality to support C# scripts.

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

24

POWER TAILORING C# SCRIPTING | USING



Batch programs
Workflow Services VBScript

Program List > SYSPRO Workflow Services

This program lets you generate workflow scripts that the SYSPRO client uses to communicate
with the deployed workflow processes. You can start a workflow process as well as move a
workflow process to different states using simple C# or VBScript syntax.

For the Scripting Engine enhancement, we made the following changes:

We added the functionality to support C# scripts.

Inspection Test Review

Program List > Quality Management > Processing

This program displays all inspection tests that were designed using the Inspection Test
Design1 program.

For the Scripting Engine enhancement, we made the following changes:

All references to VBScript were changed to Script.

We added the functionality to support C# scripts.

Inspection Test Queue

Program List > Quality Management > Processing

This program displays all sample tests that were created using the Inspection Test Design2

program and allows inspectors to update the tests assigned to them.

For the Scripting Engine enhancement, we made the following changes:

All references to VBScript were changed to Script.

We added the functionality to support C# scripts.

1Program name: SQMFRM
2Program name: SQMFRM

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

25

POWER TAILORING C# SCRIPTING | USING



Utility programs
Script Editor

Accessible by right clicking and selecting theMacro for: option within forms, panes and toolbars in
SYSPRO.

Alternatively, you can select the Edit VBScript function from the Customized Pane Editor program.

You use this program to maintain C# and VBScripts. These are simple text files that can be
edited using the SYSPRO Script Editor program or any text editor.

For the Scripting Engine enhancement, we made the following changes:

All references to VBScript were changed to Script.

The Language option was added on the toolbar so the script can be saved in VBScript
and C#.

Added a listview that displays compilation errors.

Added a listview that displays local and global references.

Added the Project References pane where you can add a reference to the script.

Added the Errors and Warnings pane.

Added these option for C# scripts:

Save for debug

Prettify syntax

Comment and uncomment code

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

26

POWER TAILORING C# SCRIPTING | USING



Affected business objects
The following indicates the business objects that are affected by this feature:

Transaction objects
Scripting Engine Transaction

The SCRIPTING ENGINE TRANSACTION1 business object lets you save and delete scripts and
references in the AdmScriptDetail and AdmScriptReference tables.

Query objects
Scripting Engine Query

The SCRIPTING ENGINE QUERY2 business object lets you query details in the AdmScriptDetail and
AdmScriptReference tables.

It is used for the caching of scripts on the startup of SYSPRO, and handles the logic to retrieve
the details about scripts to edit global and local references.

1Business object: COMTSE
2Business object: COMQSE

SYSPRO HELP AND REFERENCE
Copyright © 2025 Syspro Ltd. All rights reserved. All trademarks are recognized

27

POWER TAILORING C# SCRIPTING | USING




	Power Tailoring C# Scripting
	Exploring
	Starting
	Solving
	Using


